Journal of Organometallic Chemistry, 224 (1982) 321–326 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

REACTIONS AND PROPERTIES OF SOME TRIMETHYLENEPLATINUM(IV) COMPLEXES

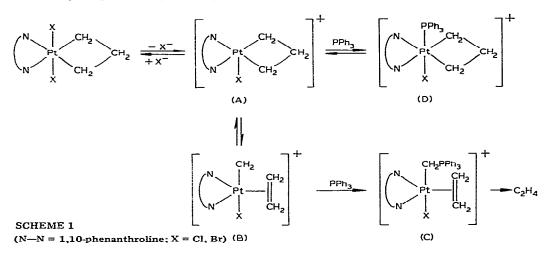
XI *. FISSION OF THE C₃ MOIETY IN REACTIONS OF PLATINACYCLOBUTANES

MELVYN C. RENDLE and C.F.H. TIPPER

Donnan Laboratories, The University, P.O. Box 147, Liverpool L69 3BX (Great Britain) (Received August 10th, 1981)

Summary

The reactions of the platinacyclobutanes $[X_2PtCH_2CHRCH_2(1,10\text{-phenan-throline})]$ (X = Cl, Br; R = H, CH₃) with unsaturated compounds in methyl cyanide, dimethylformamide and dimethylsulphoxide at room temperature have been investigated. Tetracyanoethylene, and styrene and related olefins, promoted the fission of the C₃ moiety giving ethylene (R = H) and both ethylene and propene (R = CH₃). It is suggested that this gives support to the view that ionisation of a halide occurs in these solvents of relatively high dielectric constant and that the five-coordinate positively charged platinacyclobutane species is in equilibrium with a platinum-carbene-olefin complex.


Introduction

Reactions of platinum(IV) cyclobutanes in solution normally involve rearrangements of the C₃ moiety or its ejection as a whole from the molecule [1]. However, under certain conditions, in particular with solvents of relatively high dielectric constant (CH₃CN, Me₂SO) in the presence of phosphines (e.g. PPh₃), high yields of hydrocarbons (e.g. C₂H₄) from fission of the C₃ moiety are obtained [2,3]. The essential steps in the mechanism suggested [2] are shown in Scheme 1. Route $A \rightarrow B \rightarrow C \rightarrow C_2H_4$ was favoured on general grounds. In the absence of PPh₃ the equilibrium $A \rightleftharpoons B$ would be far over to the left and other reactions of the species A would be favoured, whereas the phosphine traps the carbene very efficiently to give the ylid species C and ethylene is formed.

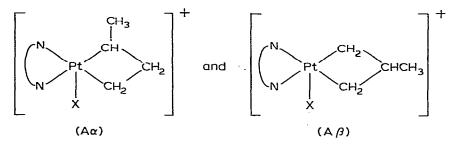
If under appropriate conditions the platinacyclobutane ring is, in fact, in equi-

* For part X see ref. 10.

librium with a carbene-olefin complex then this provides independent support for a key step in the generally accepted mechanism of olefin metathesis [4].

Thus we have investigated conditions under which fission of the C_3 moiety in $[X_2PtCH_2CHRCH_2(1,10\text{-phenanthroline})]$ (X = Cl, Br; R = H, CH₃) occurs in the absence of phosphines with a view to determining the role played by intermediates such as B.

Results and discussion


Earlier work [2,3] has shown that the very slow thermal decomposition of $[X_2PtCH_2CHRCH_2(1,10\text{-phenanthroline})]$ (X = Cl, Br; R = H, CH₃) in CH₂Cl₂, o-C₆H₄Cl₂, CH₃CN and (CH₃)₂SO in the absence of additive gave volatile products which contained <10—11% of hydrocarbons from splitting of the C₃ moiety, i.e. C₂H₄ when R = H, C₂H₄ and CH₃CH=CH₂ when R = CH₃. We have now found this to be so with dimethyl formamide as solvent also. Since unsaturated organic compounds can be efficient carbene traps [5] we have studied the effect of a variety of such compounds on the thermal decomposition.

Addition of hex-1-ene, cyclohexene, indene, phenylacetylene, vinyl acetate, diethylmaleate and the dimethyl ester of acetylene dicarboxylic acid (1 vol. additive + 6 vol. DMSO) did not increase the proportion of C_2H_4 in the volatile products of the decomposition of $[Br_2PtCH_2CH_2CH_2(1,10-phenanthroline)]$. However, tetracyanoethylene and particularly styrene and related olefins did promote fission of the C_3 moiety in this and related platinacyclobutanes. The relevant data are given in Table 1 and include some typical results with phosphines added for comparison.

TCNE is nearly as efficient as phosphines in promoting ethylene formation with $[Br_2PtCH_2CH_2CH_2(1,10-phenanthroline)]$, (No. 6, 7, 20, 21), especially as the excess in DMSO during the reaction will be much less than that added initially (see note ^e). Styrene can promote a very high yield of splitting products (e.g. 12, 24, 37) but, of course, the ratio of the liquid additives to Pt compound is roughly 500 as compared to 20 with phosphines. The additives which promote splitting of the C₃ moiety are those which can associate with the platinum(IV) via the vacant coordination site in species A. TCNE has four CN groups and methyl cyanide, for example, can act as a ligand in platinacyclobutane compounds [6]. Also there is some evidence of a direct $Pt-C_6H_5$ interaction in compounds such as $[Cl_2PtCHPhCH_2CH_2(C_5H_5N)_2]$ in which the phenyl group is attached to a carbon atom α to the platinum [7]. On conversion of A to B this association would promote the addition of the carbene moiety to the double bond of the additive and the formation of the lower olefins. Unfortunately, it was not possible to detect the presence of cyclopropanes from the carbene addition due to the presence of the huge excess of additive.

The smaller efficiency of *p*-substituted styrenes, β -methylstyrene, diphenylethylene and allylbenzene compared to styrene itself is probably due mainly to steric factors. Space filling models indicate that association of styrene itself, with the ring lying "flat" on top of the platinum, allows the double bond to come into the close proximity of the carbon atoms α to the Pt atom in the platinacyclobutane ring. This is not so easy with the other compounds.

Table 1 shows that, with the platinacyclobutanes derived from methylcyclopropane, the products of fission of the C_3 moiety contain both ethylene and propene. There are two isomers corresponding to A, viz.

The method of preparation of the original platinacyclobutanes probably leads to a mixture of isomers corresponding to $A\alpha$ and $A\beta$, the proportions varying from sample to sample. However, in solution the isomeric ions may well be interconvertible and $A\beta$ will almost certainly be the thermodynamically more stable isomer [3]. However, the ratio of ethylene to propene in the splitting products is usually greater than one with the olefinic additives and often very high (e.g. Nos. 22, 24, 27, 28, 36, 37, 40), indicating that the additive reacts preferentially with the least stable isomer, $A\alpha$, removing the CH₃CH moiety. It

was found that the slow decomposition of $[c_{12}, c_{10}, c_$

in the presence of styrene also gave relatively high yields of ethylene, indicating that again the additive attacks the α -isomer, [ClPtCHPhCH₂CH₂(C₁₂H₈N₂)]⁺, the CHPh moiety being removed. Other reactions of platinacyclobutanes from methylcyclopropane involve the least stable structural α -isomer [1].

It is difficult to see how olefins could cause fission of the ring directly by a route similar to $A \rightarrow D \rightarrow C$, and the results provide further evidence for the occurrence of metallacyclobutane ring carbene—olefin complex interconversion. In this connection, the compound [PtCH₂CH₂CH₂ (2,2'-bipyridine)], prepared recently by Kochi et al. [8], has been found to decompose to (bipy)PtCH₂⁺ and

TABLE 1		
ABL	T	ł
	A DT.	2

PRODUCTS OF THE THERMAL DECOMPOSITION OF PLATINACYCLOBUTANE COMPOUNDS IN SOLUTION IN THE PRESENCE OF ADDITIVES AT ROOM TEMPERATURE (≈20°C) Concentration of Pt compound ~2 X 10⁻³ mol 1⁻¹

$\begin{bmatrix} Cl_2^{p} tCH_2 CH_2 CH_2 (I, 10 - phenanthroline) \end{bmatrix} \\ 1 \\ 1 \\ 1 \\ DMF, DMSO \\ 2 \\ DMF \\ 1 \\ 2 \\ DMF \\ 1 \\ 2 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0$	nthroline)] S(1/6) TCNE PPh3 BDPM BDPM BDPM BDPM TCNE	500 500 70 78 78 70	C2H4 <10% C2H4 54 49 80 80 32	C ₂ H ₄ CH ₃ CH=CH ₂ C10% C ₂ H ₄ with all systems 49 17 49 43 79 17 80 16	CH2CH2CH2 29	CII2CHCH3CH2	C4H ₈ ^c
[Cl2 _p ¹ tCH2 _{CH2} CH2 _{CH2} CH2 _C U 1 CH3 _C U 2 DMF 3 DMF 4 CH3 _C U 5 DMF 6 CH3 _C U 7 DMSO 8 DMF 9 CH3 _C U	nthroline)] S(1/6) TCNE PPh3 BDPM BDPM BDPM BDPM TCNE TCNE	500 500 24 48 70 70	√10% C2114 64 79 80 32	with all systems 17 43 17 16	29		
1 CH ₃ CN 2 DMF, DMSO 3 DMF 4 CH ₃ CN 6 CH ₃ CN 7 DMSO 7 DMSO 8 DMF 9 CH ₃ CN	S(1/6)} TCNE PPh ₃ BDPM BDPM BDPM BDPM rthrollne/J	500 54 48 70 8 48	 <10% C2H4 54 49 79 80 32 	with all systems 17 43 17 16	29		
2 DMF, DMSO 3 DMF 5 DMF 6 CH ₃ CN (Br ₂ PtCH ₂ CH ₂ CH ₂ (1,10-phena) 6 CH ₃ CN 7 DMSO 8 DMF 9 CH ₃ CN	TCNE ^J PPh ₃ BDPM BDPM BDPM throlineJJ TCNE	500 54 48 70 8 48	64 64 79 80 80 32 32	with all systems 17 17 15 16	29		
2 DMF 3 DMF 4 CH ₃ CN 5 DMSO (Br ₂ PtCH ₂ CH ₂ CH ₂ (1,10-phenat 6 CH ₃ CN 7 DMSO 8 DMF 9 CH ₃ CN	PPh ₃ BDPM BDPM BDPM throline)J TCNE	500 500 48 70 8	64 49 77 80 32	17 43 15 16	29		
3 DMF 4 CH ₃ CN 5 DMSO (Br ₂ PtCH ₂ CH ₂ CH ₂ (1,10-phena) 6 DMSO 8 DMF 9 CH ₃ CN	BDPM BDPM BDPM nthroline)] TCNE	500 24 48 70 88	49 79 80 32	43 17 16			
4 CH ₃ CN 5 DMSO (Br ₂ PtCH ₂ CH ₂ CH ₂ (1,10-phena) 6 CH ₃ CN 8 DMF 9 CH ₃ CN	BDPM BDPM nthroline)] TCNE	24 48 70 8	79 80 32	17 16	8		
5 DMSO [Br2 ^P ICH2CH2CH2(1,10-phena) 6 CH3CN 7 DMSO 8 DMF 9 CH3CN	BDPM nthroline)] TCNE	48 70 18	80 77 32	16	4 d		
(Br ₂ PtCH ₂ CH ₂ CH ₂ CH ₂ (1,10-phena) 6 CH ₃ CN 7 DMS0 8 DMF 9 CH ₃ CN	nthroline)] TCNE	70	77 32		5 d		
6 7 8 DMF 6 CH ₃ CN 6 9 CH ₃ CN	TCNE	70 81	77 32				
7 8 9 CH ₃ CN		10	32	23	I		
8 DMF 9 CH ₃ CN	HCNE	2		68	9		
9 CH ₃ CN	S(1/6)	140	-	96	ო		
	S(1/6)	72	14	19	7		
10 DMSO	S(1/12)	60	12	76	12		
11 DMSO	S(1/6)	46	37	59	4		
		114	56	39	ū		
12 DMSO	S(1/3)	44	44	49	7		
		118	65	32	3		
13 DMSO	CMS(1/6)	44	22	69	9		
14 DMSO	PMS(1/6)	42	1.5	93	5.5		
15 DMSO	BMS(1/6)	32	23	55	22		
16 DMSO	AB(1/6)	20	38	42	20		
		44	24	32	44		
17 DMSO	DPE(1/6)	10	32	60	8		
18 DMSO	TPE	33	12	47	41		
19 DMF	BDPM	20	31	29	40		
20 CH ₃ CN	MADE	17	88	7	2 (+ 8% CH4) ^d		
21 DMSO	BDPM	24	86.5	e0	10,5 ^d		• •

` : •

324

22 DMF S(1/6)	S(1/6)		56.5	1 ;	1	6.5 07	37
		142				10	60
	S(1/6)	46	I	10	ł	17	00
24 DMSO	S(1/6)	46	58.5	2.5	I	19	20
		06	80	1.5	1	9.5	6
25 DMSO	PMS(1/6)	42	14.6	22	I	9'6	54
26 DMSO	BMS(1/6)	118	36	12.5	I	15	36.5
27 DMSO	AB(1/6)	118	27	2	I	34	37
28 DMSO	DPE(1/6)	44	27.5	3.5	I	38	31
		140	35.5	1.5	1	49.5	13.5
29 DMF	BDPM	20	13.5	4.5	ł	58,5	23.5
30 CH ₃ CN	PPh ₃	29	17	18	1	29	36
31 CH ₃ CN		23	32	9	I	57	E C
32 DMSO		25	25	27.5	I	16.5	317
[Br2PtCH2CHCH3CH2(2(1,10-phenanthroline)]						
33 CH ₃ CN	TCNE	94	ъ	4	ì	67	24
34 DMF	S(1/6)	46	7.5	26	I	45.5	21
		140	27.5	16.5	ł	43.5	12.5
36 CH ₃ CN	S(1/6)	47	ß	14	i	62	19
36 DMSO	S(1/12)	68	37	ū	I	50.5	7.5
		140	. 84		I	11.5	3.5
37 DMSO	S(1/6)	04	796 70	I	I	i	1
38 DMSO	BMS(1/6)	110	5 C	55	ł	21	19
39 DMSO	AB(1/6)	66	1	4	1	76	19
40 DMSO	DPE(1/6)	44	51	4.5	I	19,5	25
-		166	80	2.5	1	13	4.5
41 CH ₃ CN	PPh ₃	96	19	24	1	51	. 6
42 DMSO	PPh ₃	170	10	40.5	ł	42.5	7 f

,

325

 $C_2H_4^+$ in the mass spectrometer and also to give ethylene (in addition to propene and cyclopropane) on pyrolysis in the solid state and in solution. This suggests that the formation of carbene-olefin complexes is much more facile with platinum(II)- than with platinum(IV)cyclobutanes.

Experimental

The platinacyclobutanes were prepared by literature methods [3,9]. The method of determining the volatile products was as previously described [6].

Acknowledgements

We are most grateful to Professor R.J. Puddephatt (University of Western Ontario, Canada) for helpful discussion. One of the (M.C.R.) thanks the Science Research Council for a maintenance grant. We thank NATO for a travel grant to C.F.H.T.

References

- 1 R.J. Puddephatt, Coord. Chem. Rev., 33 (1980) 149.
- 2 D.C.L. Perkins, R.J. Puddephatt, M.C. Rendle and C.F.H. Tipper, J. Organometal. Chem., 195 (1980) 105.
- 3 R.J. Al-Essa, R.J. Puddephatt, D.C.L. Perkins, M.C. Rendle and C.F.H. Tipper, J. Chem. Soc. Dalton Trans., (1981) 1738.
- 4 See, for example, R.H. Grubbs, Progr. Inorg. Chem., 24 (1978) 1.
- 5 See, for example, M. Jones and R.A. Moss (Eds.), Carbenes, Vol. 1, Wiley-Interscience, New York, 1973.
- 6 D.C.L. Perkins, R.J. Puddephatt and C.F.H. Tipper, J. Organometal. Chem., 186 (1980) 419.
- 7 R.J. Al-Essa, R.J. Puddephatt, M.A. Quyser and C.F.H. Tipper, J. Organometal. Chem., 150 (1978) 295.
- 8 R.J. Klinger, J.C. Huffman and J.K. Kochi, J. Organometal. Chem., 206 (1981) C7.
- 9 P.W. Hall, R.J. Puddephatt, K.R. Seddon and C.F.H. Tipper, J. Organometal. Chem., 81 (1974) 423;
 F. Iwanciw, M.A. Quyser, R.J. Puddephatt and C.F.H. Tipper, J. Organometal. Chem., 113 (1976) 91.
- 10 G.E. Riley, C.F.H. Tipper and R.J. Puddephatt, J. Organometal. Chem., 208 (1981) 429.